3,918 research outputs found

    89Y NMR Probe of Zn Induced Local Magnetism in YBa2(Cu(1-y)Zn(y))3O(6+x)

    Get PDF
    We present detailed data and analysis of the effects of Zn substitution on the planar Cu site in YBa2_2Cu3_3O6+x_{6+x} (YBCO6+x_{6+x}) as evidenced from our 89^{89}Y NMR measurements on oriented powders. For x<<1x<<1 we find additional NMR lines which are associated with the Zn substitution. From our data on the intensities and temperature dependence of the shift, width, and spin-lattice relaxation rate of these resonances, we conclude that the spinless Zn 3dd10^{10} state induces local moments on the near-neighbour (% nn) Cu atoms. Additionally, we conjecture that the local moments actually extend to the farther Cu atoms with the magnetization alternating in sign at subsequent nnnn sites. We show that this analysis is compatible with ESR data taken on dilute Gd doped (on the Y site) and on neutron scattering data reported recently on Zn substituted YBCO6+x_{6 + x}. For optimally doped compounds 89^{89}Y nnnn resonances are not detected, but a large TT% -dependent contribution to the 89^{89}Y NMR linewidth is evidenced and is also attributed to the occurence of a weak induced local moment near the Zn. These results are compatible with macroscopic magnetic measurements performed on YBCO6+x_{6 + x} samples prepared specifically in order to minimize the content of impurity phases. We find significant differences between the present results on the underdoped YBCO6+x_{6 + x} samples and % ^{27}Al NMR data taken on Al3+^{3+} substituted on the Cu site in optimally doped La2_2CuO4_4. Further experimental work is needed to clarify the detailed evolution of the impurity induced magnetism with hole content in the cuprates.Comment: To be published in EPJB 15 pages of text and figures in eps forma

    Na atomic order, Co charge disproportionation and magnetism in Nax_{x}CoO2_{2} for large Na contents

    Full text link
    We have synthesized and characterized four different stable phases of Na ordered Nax_{x}CoO2_{2}, for 0.65<x<0.80.65<x<0.8. Above 100 K they display similar Curie-Weiss susceptibilities as well as ferromagnetic q=0q=0 spin fluctuations in the CoO2_{2} planes revealed by 23^{23}Na NMR data. In all phases from 59^{59}Co NMR data we display evidences that the Co disproportionate already above 300 K into non magnetic Co3+^{3+} and magnetic ≈\approx Co3.5+^{3.5+} sites on which holes delocalize. This allows us to understand that metallic magnetism is favored for these large Na contents. Below 100 K the phases differentiate, and a magnetic order sets in only for x≳0.75x\gtrsim 0.75 at TN=T_{N}=22 K. We suggest that the charge order also governs the low TT energy scales and transverse couplings

    59Co NMR study of the Co states in superconducting and anhydrous cobaltates

    Full text link
    59^{59}Co NMR spectra in oriented powders of Na0.35_{0.35}CoO2_{2} and in its hydrated superconducting phase (HSC) Na0.35_{0.35}CoO2_{2},1.3H2_{2}O reveal a single electronic Co state with identical TT independent NMR shift tensor. These phases differ markedly from Na0.7_{0.7}CoO2_{2}, in which we resolve 3 types of Co sites. The large T variation of their spin susceptibilities χs\chi ^{s} and the anisotropy of the orbital susceptibility χorb\chi ^{orb} allow us to conclude that charge disproportionation occurs, in a non magnetic Co3+^{3+} and two magnetic sites with about 0.3 and 0.7 holes in the t2gt_{2g} multiplet. The data are consistent with those for the single Co site in the anhydrous and HSC phase assuming the expected Co3.65+^{3.65+} charge.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Anode-Coupled Readout for Light Collection in Liquid Argon TPCs

    Get PDF
    This paper will discuss a new method of signal read-out from photon detectors in ultra-large, underground liquid argon time projection chambers. In this design, the signal from the light collection system is coupled via capacitive plates to the TPC wire-planes. This signal is then read out using the same cabling and electronics as the charge information. This greatly benefits light collection: it eliminates the need for an independent readout, substantially reducing cost; It reduces the number of cables in the vapor region of the TPC that can produce impurities; And it cuts down on the number of feed-throughs in the cryostat wall that can cause heat-leaks and potential points of failure. We present experimental results that demonstrate the sensitivity of a LArTPC wire plane to photon detector signals. We also simulate the effect of a 1 μ\mus shaping time and a 2 MHz sampling rate on these signals in the presence of noise, and find that a single photoelectron timing resolution of ∼\sim30 ns can be achieved.Comment: 16 pages, 15 figure

    NMR study of the magnetic and metal-insulator transitions in Na0.5CoO2: a nesting scenario

    Full text link
    Co and Na NMR are used to probe the local susceptibility and charge state of the two Co sites of the Na-ordered orthorhombic Na0.5CoO2. Above T_N=86K, both sites display a similar T-dependence of the spin shift, suggesting that there is no charge segregation into Co3+ and Co4+ sites. Below T_N, the magnetic long range commensurate order found is only slightly affected by the metal-insulator transition (MIT) at T_MIT=51K. Furthermore, the electric field gradient at the Co site does not change at these transitions, indicating the absence of charge ordering. All these observations can be explained by successive SDW induced by two nestings of the Fermi Surface specific to the x=0.5 Na-ordering.Comment: 4 pages, 4 figure

    Cu NMR evidence for enhanced antiferromagnetic correlations around Zn impurities in YBa2Cu3O6.7

    Full text link
    Doping the high-Tc superconductor YBa2Cu3O6.7 with 1.5 % of non-magnetic Zn impurities in CuO2 planes is shown to produce a considerable broadening of 63Cu NMR spectra, as well as an increase of low-energy magnetic fluctuations detected in 63Cu spin-lattice relaxation measurements. A model-independent analysis demonstrates that these effects are due to the development of staggered magnetic moments on many Cu sites around each Zn and that the Zn-induced moment in the bulk susceptibility might be explained by this staggered magnetization. Several implications of these enhanced antiferromagnetic correlations are discussed.Comment: 4 pages including 2 figure
    • …
    corecore